
Accounting
for Developers

Accounting For Developers
In this ebook, we walk through basic accounting principles for anyone building
products that move and track money.

Introduction
As a payment operations startup, accounting principles are core to our work. We
have seen them implemented at scale at some of the largest fintechs and
marketplaces. Yet, accounting seems like an arcane topic when you’re starting
out. This HackerNews thread, for example, is rather representative of the state
of confusion around the topic.

Over the years, there have been many accounting for developer guides
published (two great ones are Martin Blais' and Martin Kleppmans’), but we
wanted to add our two cents to the discussion. In our experience, a
concepts-first approach to explaining accounting comes in handy when you are
designing systems that move or touch money.

In this ebook, we will cover the foundational accounting principles, then bring it
all together by walking through how to build a Venmo clone.

Is this guide for you?

This guide is designed for developers that work on applications that handle
money in any way. You may work at a fintech company (the data you handle is
money), or perhaps you are responsible for managing the fintech integrations in
your startup (you handle data and money). We think that every engineer that
builds or maintains such systems benefits from knowing the core principles of
accounting.

https://news.ycombinator.com/item?id=23964513
https://beancount.github.io/docs/the_double_entry_counting_method.html#double-entry-bookkeeping
https://martin.kleppmann.com/2011/03/07/accounting-for-computer-scientists.html

CHAPTER 1

Does Accounting Really Matter In
Software Development?
Double-entry systems are more reliable at tracking money than any other viable
alternative. As a payments infrastructure company, we often get to see the
architecture of some of the most successful software companies. One design is
constant: they use double-entry accounting in their code. Some build their
applications from the start with accounting concepts in mind, but in most cases,
companies begin incorporating these concepts only after their original code
starts causing problems.

When software fails to track money properly, it does so in a number of common
patterns. The most common failure mode is software accidentally creating or
destroying records of funds. This leads to all sorts of inconsistencies. Every
developer we know has horror stories about explaining to their finance team
why a customer is owed money or what caused a payout to have an unexpected
amount. Internal records differing from bank statements, reconciliation engines
gone awry, balances that don’t make sense given a set of transactions—these are
all problems that can be mitigated with double-entry accounting. For more
evidence that double-entry systems are a good standard for scalable
applications, see the stories of Uber, Square, and Airbnb.

The core principle of double-entry accounting is that every transaction should
record both where the money came from and what the money was used for.
This guide explains why that is and how it works.

https://www.moderntreasury.com/journal/what-is-double-entry-accounting
https://www.moderntreasury.com/learn/bank-reconciliation
https://eng.uber.com/money-scale-strong-data/
https://developer.squareup.com/blog/books-an-immutable-double-entry-accounting-database-service/
https://medium.com/airbnb-engineering/tracking-the-money-scaling-financial-reporting-at-airbnb-6d742b80f040

CHAPTER 2

The Building Blocks Of An Accounting
System
A good starting point is understanding accounts and transactions.

Accounts

An account is a segregated pool of value. The easiest analogy here is your own
bank checking account: money that a bank is holding on your behalf, clearly
demarcated as yours. Any discrete balance can be an account: from a user’s
balance on Venmo to the annual defense spending of the United States.
Accounts generally correlate with the balances you want to track.

In accounting, accounts have types. More on this later.

Transactions

Transactions are atomic events that affect account balances. Transactions are
composed of entries. A transaction has at least two entries, each of which
corresponds to one account.

Let’s use a simple Venmo transfer as an example. Jim is sending $50 to Mary:

The entries in this transaction tell which accounts were affected. If each user’s
balance is set up as an account, a transaction can simultaneously write an entry
against each account.

Now, let’s expand this model with more accounts and additional events:

Simple ledger of Jim and Mary's accounts

Here I have a ledger—a log of events with monetary impact. We often see
developers mutating balances directly rather than computing a balance from a
log of transactions. This is suboptimal.

While mutating a balance directly is more efficient and simpler to implement,
it’s more accurate to store immutable transactions and always compute
balances from those transactions. Mutating balances creates a system that is
prone to errors, as it becomes non-trivial to detect and reconcile inaccuracies.

Notice how each transaction has multiple entries. Each entry belongs to a
transaction and an account. By comparing entries side by side, one can
understand where the money came from and what it was used for.

Double-entry ensures that, as transactions are logged, sources and uses of
funds are clearly shown, and balances can be reconstructed as of any date:

Zooming in on a transaction from Jim to Mary

This core idea—one transaction, at least two entries, one representing the
source and the other representing the use of funds—is one of the foundational
ideas of double-entry accounting. We’ll expand more on this later.

Dual Aspect

As mentioned, another big innovation of accounting was creating account types.
The two types we will cover here are debit normal and credit normal:

● Accounts that represent funds you own, or uses of money, are debit
normal accounts.

● Accounts that represent funds you owe, or sources of money, are credit
normal accounts.

Let’s illustrate: the right side lists credit normal accounts and the left side lists
debit normal accounts. We’ll put accounts tracking uses of funds on the debit
normal side and accounts tracking sources of funds on the credit normal side.

Examples of uses of funds are assets and expenses. Buying inventory, making an
investment, acquiring physical property, and so on. The term “use” is broadly
defined: letting cash sit in a bank account is a use of funds, as well as selling on
credit to someone else (you are effectively “using” the money you’d get on a sale
by extending them credit). The accounts that represent these balances are all
debit normal accounts.

Conversely, sources of funds—such as liabilities, equity, or revenue—can mean
bank loans, investors' capital, accumulated profits, or income. “Source” is
broadly defined, too: if you are buying on credit, for instance, that is a “source”

of money for you in the sense that it prevents you from spending money right
now. Accounts that represent these balances are credit normal accounts.

What ladders up to debit normal and credit normal accounts

Here is a handy table with the different account types:

Account categories with simple mnemonics and examples

(Notice that debit cards hold money you own, while credit cards hold money
you owe.)

Debits and credits

Some of the guides we mentioned at the beginning of this post advise
developers to “save the confusion and flush out debits and credits from your
mind.” We do recognize that debits and credits can be challenging to grasp, but
we think fully mastering these concepts is important when creating transaction
handling rules.

Part of the confusion is that “debits” and “credits” are often used as verbs: to
debit or to credit an account. Debits and credits can also refer to entries, for
example:

Debit and credit entries

This sample transaction has two entries: we’re debiting our cash account and
crediting our equity account for $1M. Save for a few special situations,
accounting systems only log positive numbers. The effect on balances will
depend on whether the entry is on the “debit side“ or “credit side.”

Debits and credits are a shorthand for the expected effects on accounts,
depending on their type. A credit entry will always increase the balance of a
credit normal account and decrease the balance of a debit normal account. Put
differently:

Entries and their expected effects

Let’s model out a few transactions to drive this point home. Let’s use a fictitious
startup called Modern Bagelry—an eCommerce store for premium bagels.

In this example, we will use four accounts: Cash and Inventory (both debit
normal accounts) as well as Equity and Loans (both credit normal accounts).
Let’s say this ledger starts on a day T, and we are measuring time in days.

Modern Bagelry example of debits and credits

A common misconception is that one account needs to decrease while another
needs to increase. However, they can both increase or decrease in tandem,
depending on the debit and credit entries in the transaction and the account
types. In the first transaction cash increases because it’s a debit entry in a debit
normal account (cash); equity also increases because it’s a credit entry in a
credit normal account (equity). Conversely, in the last transaction both balances
decrease because we are adding a debit entry into a credit normal account
(loans) and a credit entry into a debit normal account (cash).

Balancing debits and credits

Tracking sources and uses of funds in a single ledger with double-entry is
helpful to clearly show clearly that balances match.

Let’s say we are aggregating the balances for each account in the example above
right after each transaction takes place:

Ending balances for Modern Bagelry

A system of accounts will balance as long as the balance on debit normal
accounts equals the balance on credit normal accounts. The ending balances of
Cash ($1.22M) and Inventory ($250k) sum to $1.47M. That is equal to the sum of

https://www.moderntreasury.com/learn/single-vs-double-entry-accounting

ending balances of Equity ($1M) and Loans ($470k). It is said that our accounts in
this example are balanced. Not matching would mean the system created or lost
money out of nothing.

Before moving on, let’s recap the principles we’ve reviewed so far:

● A ledger is a timestamped log of events that have a monetary impact.
● An account is a discrete pool of value that represents a balance you want

to track.
● A transaction is an event recorded in the ledger.
● Transactions must have two or more entries.
● Entries belong to a ledger transaction and also belong to an account.
● Accounts can be classified as credit normal or debit normal.
● Entries can be added onto the ledger “on the debit side” or “on the credit

side." Debits and credits refer to how a given entry will affect an account’s
balance:

● Debits—or entries on the debit side—increase the balance of debit normal
accounts, while credits decrease it.

● Credits—or entries on the credit side—increase the balance of credit
normal accounts, while debits decrease it.

● If the sum of balances of all credit normal accounts matches the sum of
balances of all debit normal accounts in a single ledger, it is said that the
ledger is balanced. This is an assurance of consistency and that all money
is properly accounted for.

CHAPTER 3

Putting Principles Into Practice: Building
A Venmo Clone
In this chapter, we will be designing the ledger for a Venmo clone—a simple
digital wallet app. Throughout, we will show how to apply the double-entry
accounting principles we covered in the previous two chapters.

If you’re curious about the API calls and system design considerations of
designing a digital wallet app, you can also check out our previous journal on
how to build a digital wallet.

To recap, for a system to gain the consistency benefits that accounting provides:

● It should be composed of accounts and transactions
● Accounts should be classified as debit or credit normal
● Transactions should enforce double-entry upon creation. Each

transaction needs to have at least two entries, which, in aggregate, must
affect credit and debit sides in equal amounts.

● The aggregate balance of credit normal accounts and debit normal
accounts should net out to zero (credits = debits).

Step 1: Reviewing the use case

Let’s start with the product requirements of our Venmo clone, first from the
user’s perspective:

● Each user will have an account balance, exposed via the app
● Users can add to their balance by way of card payments
● Users can send money to each other in the app
● Users can withdraw balances into a bank account via ACH or a debit card

https://www.moderntreasury.com/journal/what-is-double-entry-accounting
https://www.moderntreasury.com/journal/what-is-double-entry-accounting
https://www.moderntreasury.com/learn/digital-wallet
https://www.moderntreasury.com/journal/how-to-build-a-digital-wallet-product

● Users will pay a small fee when they make a withdrawal from the app, to
be deducted from their wallet balance.

From a product perspective:

● We want to discern between the account balances for each user and
expose them to said users consistently;

● We want to ensure cash in hand in our bank account is always equal to the
total users deposited in the app;

● We want to properly calculate and collect revenue from fees;
● Each deposit will need to account for a 3% card transaction processing

fee paid by us.

Step 2: Building your chart of accounts

With these requirements in mind, let’s map our chart of accounts (COA). The
COA is a simple depiction of the accounts we will need, their type, and
normality:

Our Venmo Clone's Sample Chart of Accounts

https://www.moderntreasury.com/learn/chart-of-accounts

Let’s review this in detail:

A cash account represents the amount of money we are holding in our bank
account in cash. Because it represents an asset or use of funds, we will treat it
as a debit normal account. For more information on debit and credit normal
accounts, refer to the “Dual Aspect” section of Part I of this series here.

The user balance accounts represent funds we are holding on behalf of our
users. Because users should be able to withdraw them at any time, they are
funds we ‘owe’—or liabilities. Those funds are technically now available for our
‘use’ - and as such, they are sources of funds. Therefore, they should be credit
normal accounts. Notice that we need one account for each customer that
creates an account with us.

To track card fees, we will be using a debit normal account. This account’s
balance will increase every time we pay off card processing fees. This is a debit
normal account because it represents expenses or uses of funds.

Finally, the fees we collect in each transaction are to be treated as revenue.
Given these are sources of funds, they are credit normal accounts.

Step 3: Mapping sample transactions

After mapping our chart of accounts, we should consider the typical events that
will affect the ledger. For the sake of this example, we will cover three
transaction types:

➊ Transfers

The user sends money from their balance to another user.

➋ Deposits

The user adds cash into their account balance. At the time of transfer, we
need to account for the credit card processing fee. (Let’s assume, for the
sake of this example, that credit card fees are paid by us.)

➌ Withdrawals

The user withdraws from their account balance. We charge a fee when
users withdraw from the app, deducted from their balance. At the time
of transfer, we need to account for our own service fee as revenue.

Let’s walk through the implementation for these transactions, starting with a
transfer:

Mapped funds transfer of $100 from Art to Brittany

This chart shows a typical transfer of $100 from Art to Brittany. In this case, the
transaction amount is debited (deducted) from Art’s Wallet (who’s initiating the
transfer) and credited (added) to Brittany’s Wallet (who’s the receiver).

Note that this logic can be used for any in-app transfer—we just have to
designate which wallet is the sender vs receiver in each case. All wallets are
represented as credit normal accounts. If Brittany was sending money to Art,

then Brittany’s balance would be debited (decrease), and Art’s balance would be
credited (increase).

Next, let's look at a deposit:

Art's Deposit of $300

In this model, three accounts are involved: the Art's Wallet, Cash, and Card
Processing Expenses. When Art deposits an amount into his wallet, he will see
the balance increase by the same amount. Simultaneously this will increase cash
balance and the total paid in processing fees.

To further illustrate this, let’s say Art deposits $300 in his wallet balance using a
credit card. Recall that for the sake of this example, our app is paying for card
fees. To counterbalance the $300 credit (increase) on Art’s Wallet, we need two
debit entries: one on the cash account (which increases it) and one on the card
processing expenses account (which also increases it).

Our card processing expenses account increases by $6 (or 2% of the
transaction). And given we are recording this expense as paid off to our credit
card vendor, our cash balance increases by $294 ($300-$6).

The power of double-entry is recording this flow of money in a single event.
Without double-entry, we would need a way for the system to recognize all of
the deposit transactions and properly account for card fees. By recording all of

the money movement in a single transaction with multiple entries, we make
sure our system is consistent. As debits = credits, money in equals money out.

The same goes for a withdrawal:

Brittany’s withdrawal of $500

A withdrawal is similar to a deposit, except that in this case, we are charging an
extra fee from the user and recognizing it as revenue from fees. This transaction
will decrease Brittany’s Wallet and Cash but will increase Revenue from Fees.

For example, let’s say Brittany is withdrawing $500 from her wallet balance.
Brittany knows that she will pay a fee on that transfer amount. Let’s assume that
the fee is 0.5% of the withdrawal amount, or $2.50. Her user wallet gets
deducted for the entire $500 + $2.50, or $502.50. That is the debit entry
(decrease) on her user wallet balance.

To represent this on the credits side, we will add a credit entry that deducts the
cash account for $500, given this is actual money we wired out to Brittany.
However, we owe $2.50 less to Brittany and can recognize the fees we charged
from her as revenue by crediting (increasing) our revenue from fees account.

There are many different ways to model this. We could have chosen to have
Brittany receive $497.50 ($500-$2.50), for example. In this case, we would

add/credit the $2.50 we kept to revenue from fees similarly, but our cash would
only decrease/credit by $497.50. The ledger would still balance. Thinking in
terms of credit and debit normality gives you the flexibility to log transactions in
the best way for your business.

Step 4: Bringing it all together

Let’s review the logical elements we would create to service this use case:

● One ledger object that represents the entire collection of accounts and
transactions. All of our accounts and transactions should belong to a
single ledger.

● At least four types of account objects:
○ User Wallets (one per user, credit normal)
○ Cash (single account, debit normal)
○ Revenue from Fees (single account, credit normal)
○ Card Processing Expenses (single account, debit normal)

● At least three modeled transactions
○ User Transfer
○ Deposit
○ Withdrawal

If you are building a ledger using a relational database you’ll want to model
accounts as belonging to a single ledger where transactions (or events) will be
written into. Accounts should have constraints according to their type: credit or
debit normal. Such constraints should dictate how debit or credit entries affect
account balances according to the principles we covered in our first two
chapters.

Similarly, transactions would have to be modeled in a way such that they are
composed of at least two entries. Such entries would have a ‘direction’, one of
debit or credit. Your system should enforce equality between the sum of
amounts on debit entries and the sum of amounts on credit entries.

The double-entry treatment for each type of transaction we covered on step 3
can then be mapped into functions in your application code that dictate how
you will write into the ledger database as transactions happen.

By setting up the ledger as a double-entry system, we ensure that our Venmo
clone scales consistently. And as new product requirements come up or
functionalities are rolled out, we can update our chart of accounts and the
transaction models to represent them in the ledger appropriately.

CHAPTER 4

Applying The Concepts: Building a
Lending Marketplace
This chapter will explore the accounting principles behind a lending app. Here,
we’ll look at a consumer lending marketplace akin to Lending Club that we’ll call
Modern Lending. While we are showcasing a lending marketplace, you will find
that the principles presented here are applicable to most types of lending
ledgers.

For lending applications, keeping track of money using double-entry is
especially important. Double-entry ensures funds are not created or destroyed
out of nothing, and balances are always accurate. Using double-entry
constraints in database development is a best practice for fintechs and other
companies that move money (read more about this topic in our article How And
Why Homegrown Ledgers Break and the public examples of Uber, Square, and
Airbnb).

https://www.moderntreasury.com/journal/how-and-why-homegrown-ledgers-break
https://www.moderntreasury.com/journal/how-and-why-homegrown-ledgers-break
https://www.uber.com/blog/money-scale-strong-data/
https://developer.squareup.com/blog/books-an-immutable-double-entry-accounting-database-service/
https://medium.com/airbnb-engineering/tracking-the-money-scaling-financial-reporting-at-airbnb-6d742b80f040

Why Double Entry

As a reminder, obeying double-entry accounting rules boils down to following
these principles:

● Your ledger should be composed of accounts and transactions;
● Accounts represent the balances your ledger will track. They can be

classified as debit normal or credit normal.
● Transactions represent business events that have a monetary impact.

They are composed of multiple entries (at least two). Each entry can be on
the debit side or credit side.

● The aggregate balance of all credit normal accounts and all debit normal
accounts in a ledger should net out to zero (credits = debits).

Step 1: Reviewing The Use Case

Let’s start with the requirements for our fictitious Modern Lending. This is a
peer-to-peer lending marketplace where individuals can add money to a shared
pool of cash managed by Modern Lending. These investors can then set their
risk preferences, accept interest rates and invest directly on the platform.

Modern Lending then lends out the money to borrowers on the platform,
adjusting the amount and interest rate based on their creditworthiness.
Borrowers pay back their principal balance over time, and after repayments,
Modern Lending returns capital to investors, plus interest. Modern Lending
recognizes (books) the spread between the interest it gets paid by borrowers
and the interest it pays to investors as revenue.

This translates into the following set of product requirements:

● Users should be able to self-select as investors or borrowers during
onboarding;

● For investors:

○ During onboarding, they would choose between a set of investing
options, varying by term (when they get their money back) and
interest rate (how much they get in return).

○ After onboarding, they would wire or ACH their committed
investment into the Modern Lending cash pool. This investment
would be represented in their account as a balance.

○ At the end of their chosen term, they receive their principal back
plus interest.

● For borrowers:
○ During onboarding, they would submit information about

creditworthiness and income.
○ They would then receive a list of potential loans they can take

varying by amount, term, and interest rate.
○ Next, they would pick one of these loans and have money disbursed

to them in the form of a wire, ACH, or RTP transfer.
○ Over time, the borrower would make repayments in the platform

against their principal and interest balance, which would be
represented in-app.

Let’s assume there are no transaction costs or fees. We will also assume we are
building this application for scale—Modern Lending should be configured to
handle thousands of investors and borrowers triggering disbursements and
collections every day. Finally, let’s also assume we would like to build our ledger
flexibly to accommodate future product expansions.

This scenario creates a set of ledgering requirements:

➊ Transactions need to be logged as they happen.

For this, we will need a ledger API that embeds directly into our application
code and writes into the ledger database as business events happen.
Modern Lending needs to parse financial transactions and dictate how to

https://www.moderntreasury.com/learn/what-is-a-wire-transfer
https://www.moderntreasury.com/learn/what-is-ach
https://www.moderntreasury.com/learn/what-is-a-wire-transfer
https://www.moderntreasury.com/learn/what-is-ach
https://www.moderntreasury.com/learn/what-is-rtp
https://www.moderntreasury.com/learn/ledger-api

write in the ledger—we’ll call this ‘translation’ service transaction handling
logic.

➋ Balances need to be kept up to date consistently and automatically.

Transactions need to be parsed appropriately in order to update the
correct balances. Aggregations need to be efficient, and balances need to
be updated within milliseconds of a transaction taking place. They also
need to be queryable to support transactions such as showing the user an
updated balance after a transaction is completed. For this to be true, we
need to map our accounts to their given normality—a set of constraints
that will help the ledger obey double-entry rules. Such constraints are
represented in a chart of accounts.

➌ The ledger needs to accommodate a high volume of financial
transactions and be built flexibly to expand our product offerings in the
future.

In essence, this needs to be a central ledger that is divorced from fund
movements (i.e., our underlying bank account setup) and is fully
programmatic and flexible. The ledger’s functionality and underlying data
models should not be tightly coupled to business logic.

In the next sections, we discuss the accounting setup—first, our chart of
accounts, then our transaction handling logic.

Step 2: Reviewing The Data Flow

Before we start with the ledgering setup, it’s important for us to understand
how data flows in a lending system. Modern Lending would need to implement
the following services infrastructure alongside its ledger.

https://www.moderntreasury.com/learn/chart-of-accounts

How Modern Lending's systems come together

There are two kinds of data Modern Lending needs to keep track of:

● Historical data, or data that reliably represents the current financial state
of Modern Lending based on posted transactions.

● Prospective data, specifically those that are defined by the business
model: interest rates, loan terms, payment amounts, and the payment
breakdown of interest versus principal.

Modern Lending will need to make use of an amortization schedule, a tool that
utilizes interest rates, principal, and loan term to define monthly payments. It is
also common for lending businesses to front-load the percentage of a
customer’s payments that goes towards interest versus principal. An internal
service on Modern Lending’s backend can track this data and modify outputs
based on new inputs (i.e., new loan terms).

The ledger database acts in tandem with the amortization schedule. The ledger
acts as the source of truth for historical information. Every time the
amortization schedule service needs to provide an updated view of current

https://www.investopedia.com/terms/a/amortization_schedule.asp

balances, it cross-references the amortization schedule with the ledger
database to provide accurate data.

Keeping historical information in the ledger and the amortization schedule
outside of the ledger keeps Modern Lending’s data store clean and referenceable
over the course of the lifetime of the loan.

Notice that the ledger also needs to interact with another service divorced from
the underlying ledger: payments and reconciliation logic. This service is our way
of representing Modern Lending’s payment processor of choice: this can be a
card processor or Modern Treasury Payments API if you’re using ACH, wire, or
RTP. Transactions come in as webhooks and get parsed as ledger transactions
according to the rules presented below.

Step 3: Building Your Chart of Accounts

A chart of accounts is a simple depiction of the accounts Modern Lending will
need, their type, and normality.

Modern Lending's Chart of Accounts

https://www.moderntreasury.com/learn/chart-of-accounts

Let’s review this in detail. First, we have two general accounts: cash and revenue.
Cash tracks the overall cash position of Modern Lending. As it represents a use
of funds, it is a debit normal account. Revenue, on the other hand, represents a
tally of how much money we recognize (book) as revenue during the regular
course of business. It is a credit normal account because it represents a source
of funds. For the sake of this example, Modern Lending has a single revenue
stream: interest.

You may have noticed we have a set of “n of” accounts. This is our way of
representing that each investor and each borrower will have two sets of
accounts: one tracking principal and one tracking interest. While we will only
need one cash and one revenue account, we need multiple sets of user
accounts.

Principal accounts track total capital invested by investors and total capital lent
to borrowers. The investor principal accounts are credit normal because they
represent sources of funds—or funds Modern Lending owes. Conversely,
borrower principal accounts are debit normal because they represent uses of
funds—akin to receivables.

Finally, interest accounts track the interest balance for both investors and
borrowers. They follow the same normality rules as the principal accounts: they
are credit normal when they track interest due to investors and debit normal
when they track interest that is owed to Modern Lending by the borrowers.

Step 4: Mapping Transaction Logic

Let’s consider the typical set of events that will hit the ledger. As mentioned
before, a stream of transactions is parsed through the internal service handling
payments and reconciliation. Transactions are then written into the ledger
according to the rules presented below. The examples below are meant to be
illustrative of what transaction handling logic looks like - there are other
transaction types not presented here Modern Lending would need to parse out.

Here we cover the following archetypical transactions:

● Investor deposit. An investor adds money to their balance.
● Borrower disbursement. A borrower initiates a loan and receives funds.
● Interest calculation. Monthly interest gets added to the interest balance

for both borrowers and investors. As part of this calculation, part of the
interest gets recognized as booked revenue.

● Borrower repayment. A borrower repays monthly installments covering
both interest and principal.

● Investor withdrawal. At the end of their term, Modern Lending sends
principal plus interest owed to investors.

In this example, we’ll simplify our marketplace down to one investor (Brittany)
and one borrower (Art). We’ll also assume the following data about our loans is
coming from our amortization schedule:

● Brittany is depositing $10,000 as an investor and expects a 4.8% return
upon completion of her 1-year term. This equates to a payment of $10,480
to her at the end of month 12, or $10,000 in principal plus $480 in interest.

● Art is borrowing $5,000 and will pay 12% annual interest over the course
of his 1-year loan. This equates to $600 in interest at the end of the year. If
we also assume simple interest calculations and monthly payments, the
amortization schedule also informs our ledger that Art needs to make
monthly payments of $466.67, with $416.67 ($5,000 / 12) of this being
directed towards principal, and $50 ($600 / 12) directed towards interest.

Transaction Type 1. Investor deposit

Brittany's $10K investor deposit

As Brittany deposits money on the Modern Lending platform, we debit
(increase) the cash account and credit (increase) Brittany’s investor balance
account. Brittany’s interest rate is fetched from our amortization schedule.

Notice that we don’t record any kind of interest due to Brittany on the ledger at
this time, regardless of the fact Brittany was promised a 4.8% return upon
sign-up. Interest is ledgered in a separate transaction (see below).

Transaction Type 2. Borrower disbursement

Art gets disbursed $5K

When Art is approved for a loan and receives $5,000, we credit (decrease) our
cash account and debit (increase) Art’s principal due account. As above, notice
we do not record any kind of interest owed by Art at this time.

Transaction Type 3. Interest calculation

Monthly interest calculation

Recall that Brittany lent $10,000 and expects a 4.8% return in a year. That means
her effective interest payment at maturity (when the loan is due) equates to
$480. Given we are assuming simple interest, we can see that we should add $40
to her interest balance to the ledger every month ($480/12). This is a credit
because we are increasing a credit normal account.

As outlined before, Art borrowed $5,000 at 12% to be paid in a year. This means
Art’s final interest balance will be $600 at the end of the year. Assuming simple
interest again, our ledger should add $50 every month to Art’s interest balance
($600/ 12). This is a debit because we are increasing a debit normal account.
(Let’s assume Brittany’s remaining $5,000 just sits on Modern Lending’s cash
account for now).

At the end of the year, Modern Lending will have received $600 from Art and will
owe Brittany $480 in interest. The difference of $120 is recognized as revenue.
Every month, as interest gets calculated, we add $10 to our revenue account
($120 / 12).

You may be wondering why we recognize revenue as interest gets calculated, as
opposed to when a borrower pays out their repayments or when an investor
receives their payout. There is a difference between booked revenue (accrual)
and realized revenue (cash). These two concepts are borne from accrual and
cash accounting principles.

In this case, we are using accrual accounting and booking revenue at the point
in which it is earned: when interest is incurred. In a marketplace of hundreds or
thousands, these transactions would be handled by a monthly cron job that
calculates interest and modifies balances on the ledger at a predetermined date.

Were we using cash accounting, we would add to the realized ledger only after a
borrower makes their repayments and investors get paid back. Because your
application ledger doesn’t need to comply with GAAP accounting rules, we
suggest you pick the method that leads to the cleanest ledger.

Transaction Type 4. Borrower repayment

Art pays his monthly installment

Every month Art makes a payment towards his balance. At the end of the term of
his loan Art will have to pay a total of $5,600, $5,000 in principal, and $600 in
interest. This translates into a monthly payment of $466.67.

After the transaction clears, we debit (increase) our cash account by $466.67. In
the same transaction, we credit (decrease) both principal and interest balances

https://www.investopedia.com/ask/answers/09/accrual-accounting.asp
https://www.investopedia.com/ask/answers/09/accrual-accounting.asp
https://www.investopedia.com/terms/g/gaap.asp

for Art. Principal gets deducted by $416.67 ($5,000 / 12) and interest gets
deducted by $50 ($600 / 12).

At this point, the ledger shows one payment made by Art, a principal balance of
$4,583.33 ($5,000 - $416.67), and an interest balance of zero. This happens
because we recognized interest in the “interest calculation” section and then
immediately zeroed it out as the payment was made. The sum of credits towards
Art’s interest balance represents the total paid in interest. We can contrast this
with the data from Modern Lending’s amortization schedule to derive Art’s
remaining principal balance.

Transaction Type 5. Investor disbursement

Brittany gets repaid at year end

Finally, at the end of the year, Brittany would get disbursed her principal of
$10,000 in addition to the 4.8% return—or $480—promised to her. We credit
(decrease) our cash account, and simultaneously, we lower her principal and
interest down to zero by debiting (decreasing) $10,000 and $480, respectively.

Step 5: Bringing It All Together

Let’s review the elements we would need in place to service this use case:

● Modern Lending needs a central ledger that represents the entire
collection of accounts and transactions;

● Working with the ledger, we need two services: one that streams
transaction data (typically a payments API like Modern Treasury) and one
amortization schedule.

● The ledger will need at least six types of accounts:
○ One debit normal cash account
○ One credit normal revenue from interest account
○ One credit normal investor principal account per investor in the

platform
○ One credit normal investor interest account per investor in the

platform
○ One debit normal borrower interest account per borrower in the

platform
○ One debit normal borrower principal account per borrower in the

platform.
● Transaction logic that supports at least the following five types of typical

transactions:
○ Investor deposit
○ Borrower disbursement
○ Interest calculation
○ Borrower repayment
○ Investor disbursement

The bottom line is that while using double-entry is the best way to ensure
integrity of the financial information flowing through Modern Lending’s
product, it requires a bit of setup and parsing through the most common
transactions. While this seems hard at first, understanding accounting
principles goes a long way. The hard part—we believe—is setting up the
underlying ledger database with the right constraints and level of flexibility.

https://www.moderntreasury.com/

In Summary
It can be onerous for generic databases to reliably handle double-entry
accounting. If you are a developer who works with money, the opportunity cost
of building a ledger from scratch may not be worth it. Modern Treasury Ledgers
simplifies the process of building a dependable double-entry system. Reach out
to us to learn more.

https://www.moderntreasury.com/products/ledgers
https://www.moderntreasury.com/talk-to-us
https://www.moderntreasury.com/talk-to-us

	ebook-cover_accounting-for-developers
	Accounting For Devs Ebook (Parts 1-3)

